The signature of ozone depletion on tropical temperature trends, as revealed by their seasonal cycle in model integrations with single forcings

نویسندگان

  • Lorenzo M. Polvani
  • Susan Solomon
چکیده

[1] The effect of ozone depletion on temperature trends in the tropical lower stratosphere is explored with an atmospheric general circulation model, and directly contrasted to the effect of increased greenhouse gases and warmer sea surface temperatures. Confirming and extending earlier studies we find that, over the second half of the 20th Century, the model’s lower-stratospheric cooling caused by ozone depletion is several times larger than that induced by increasing greenhouse gases. Moreover, our model suggests that the response to different forcings is highly additive. Finally we demonstrate that when ozone depletion alone is prescribed in the model, the seasonal cycle of the resultant cooling trends in the lower stratosphere is quite similar to that recently reported in satellite and radiosonde observations: this constitutes strong, new evidence for the key role of ozone depletion on tropical lower-stratospheric temperature trends.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Impact of Ozone-Depleting Substances on Tropical Upwelling, as Revealed by the Absence of Lower-Stratospheric Cooling since the Late 1990s

The impact of ozone-depleting substances on global lower-stratospheric temperature trends is widely recognized. In the tropics, however, understanding lower-stratospheric temperature trends has proven more challenging. While the tropical lower-stratospheric cooling observed from 1979 to 1997 has been linked to tropical ozone decreases, those ozone trends cannot be of chemical origin, as active ...

متن کامل

Large cancellation, due to ozone recovery, of future Southern Hemisphere atmospheric circulation trends

[1] The role of stratospheric ozone recovery in the Southern Hemisphere climate system, in the coming decades, is examined by contrasting two 10‐member ensembles of Community Atmospheric Model (CAM3) integrations, over the period 2000–2060. Model integrations in the first ensemble are conducted with a complete set of forcings: greenhouse gas concentrations from the A1B scenario, SSTs from corre...

متن کامل

Comparing the impacts of tropical SST variability and polar stratospheric 3 ozone loss on the Southern Ocean westerly winds

24 Observed 850 hPa westerly wind trends over the Southern Ocean during 1979-2011 exhibit 25 strong regional and seasonal asymmetries. On an annual basis, trends in the Pacific Sector 26 (40°S-60°S; 70°W-160°W) are significant and three times larger than zonal-mean trends related 27 to the increase in the Southern Annular Mode (SAM). Seasonally, the SAM-related trend is 28 significant in austra...

متن کامل

Isolating the roles of different forcing agents in global stratospheric temperature changes using model integrations with incrementally added single forcings.

Satellite instruments show a cooling of global stratospheric temperatures over the whole data record (1979-2014). This cooling is not linear, and includes two descending steps in the early 1980s and mid-1990s. The 1979-1995 period is characterized by increasing concentrations of ozone depleting substances (ODS) and by the two major volcanic eruptions of El Chichón (1982) and Mount Pinatubo (199...

متن کامل

Drivers of the Recent Tropical Expansion in the Southern Hemisphere: Changing SSTs or Ozone Depletion?

Observational evidence indicates that the southern edge of theHadley cell (HC) has shifted southward during austral summer in recent decades. However, there is no consensus on the cause of this shift, with several studies reaching opposite conclusions as to the relative role of changes in sea surface temperatures (SSTs) and stratospheric ozone depletion in causing this shift. Here, the authors ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012